
GENERAL CUDA TIPS
CS179 2021 – ETHAN JASZEWSKI



NVIDIA LIBRARIES

 cuBLAS

 Generalized BLAS package that runs on GPU

 Highly performance tuned (never write your own BLAS 

kernels)

 cuSPARSE

 Performant sparse matrix multiplication library

 Supports fully sparse and mixed (i.e., sparse and dense) 

operations

 cuSOLVER

 Performant solvers for dense and sparse matrices

 cuRAND

 Performant GPU-oriented random number generation

 Callable both in-kernel and via host code

 cuFFT

 Performant GPU FFT with FFTW-style interface

 Supports multi-gpu and asynchronous computation

 cuDNN

 GPU-accelerated library of ML primitives

 Highly performance tuned 



USEFUL OPERATIONS

 Warp Shuffle

 Fast way to exchange data within a warp

 Helps avoid __syncthreads() calls

 Helps simplify code significantly

 Shared Memory Atomics

 Normal atomic operations – just to shared memory

 Much faster than global memory atomics

 Available on Maxwell and later GPUs



NUMBA

 Essentially just CUDA in Python

 Easy interop with Numpy

 Can be used through Jupyter (i.e., Google Colab)

 Provides bindings to Nvidia APIs through pyculib

 pyculib provides:

 cuBLAS

 cuSPARSE

 cuRAND

 cuFFT



MISC. TIPS

 Pay attention to block and grid dimensions

 Well-dimensioned kernels can be a lot faster

 Different kernels might need different block shapes

 Avoid atomic operations when possible

 Atomic operations and __syncthreads() are slow!

 Pay attention to memory

 Most kernels are memory bandwidth limited

 Try to do a “good amount” of work for the input data

 Use the Nvidia APIs

 They are highly optimized for most operations

 Avoid premature optimization

 Start simple, then improve iteratively

 Don’t optimize things that don’t matter

 Enable –O3 on your compiler!



QUESTIONS?


