GENERAL CUDA TIPS

CS179 2021 - ETHAN JASZEWSKI

NVIDIA LIBRARIES

CuBLAS

= Generalized BLAS package that runs on GPU

= Highly performance tuned (never write your own BLAS
kernels)

CUSPARSE

= Performant sparse matrix multiplication library

= Supports fully sparse and mixed (i.e., sparse and dense)
operations

cuSOLVER

= Performant solvers for dense and sparse matrices

cuRAND

= Performant GPU-oriented random number generation
= Callable both in-kernel and via host code

CUFFT

= Performant GPU FFT with FFTW-style interface

= Supports multi-gpu and asynchronous computation
cuDNN

= GPU-accelerated library of ML primitives

= Highly performance tuned

USEFUL OPERATIONS

= Warp Shuffle = Shared Memory Atomics
= Fast way to exchange data within a warp = Normal atomic operations - just to shared memory
= Helps avoid __ syncthreads() calls = Much faster than global memory atomics
= Helps simplify code significantly = Available on Maxwell and later GPUs
GTX Titan X: random distributions GTX Titan X: real images
__inline device e i et
int (int wal) {
for (int mask = warpSize/2; mask > 8; mask /= 2) e
val += (val, mask); 1200
return val; 1000
} 800

time {ms)

‘-—-,___-'.-____
200 .——p—ﬂ—_—.-_—*_—a

'———o-._____._____.-c

—

100% 1% 54% 4% 2% 0% animails nature sunset austin

entropy image name

NUMBA

Bcuda.jit("void (double[:,

:], double[:,:], double[:, :1}")

def numba matmul (a, b, c):

= Essentially just CUDA in Python
®= Easy interop with Numpy
= Can be used through Jupyter (i.e., Google Colab)

= Provides bindings to Nvidia APIs through pyculib [3]
= pyculib provides:
= CuBLAS 4]
= CUSPARSE
= CuRAND
= CuFFT (6]

cuda.threadIdx.y + cuda.blockIdx.y * cuda.blockDim.y
cuda.threadldx.x + cuda.blockIdx.x * cuda.blockDim.x

row =

col

if row < a.shape[l] and col < b.shape[l]:
val = 0.0
for i in range (a.shape[1]):
val += a[row] [i] * b[i] [col]

clrow] [coal] = wal

a = np.random.randn (1024, 1024)
b = np.random.randn (1024, 1024)
L%timeit

c = np.matmul {(a, b)

10 loops, kest of 5: 64.3 m=s per loop

$%timeit
c = np.zeros| (1024,
numba matmul[(32, 32),

1024))

(32, 32)1la, b, c, 1024, 1024, 1024)

10 loops, best of 53: 34.9 ms per loop

MISC. TIPS

= Pay attention to block and grid dimensions = Use the Nvidia APIs
= Well-dimensioned kernels can be a lot faster = They are highly optimized for most operations
= Different kernels might need different block shapes = Avoid premature optimization

= Avoid atomic operations when possible = Start simple, then improve iteratively
= Atomic operations and __syncthreads() are slow! = Don’t optimize things that don’t matter

= Pay attention to memory = Enable -O3 on your compiler!

= Most kernels are memory bandwidth limited

= Tryto doa “good amount” of work for the input data

QUESTIONS?

